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DFS Algorithm from a Vertex
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Example
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Example (cont.)
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DFS and Maze Traversal 

❑ The DFS algorithm is
similar to a classic 
strategy for exploring 
a maze
◼ We mark each 

intersection, corner 
and dead end (vertex) 
visited

◼ We mark each corridor 
(edge ) traversed

◼ We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v
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The General DFS Algorithm

❑ Perform a DFS from each unexplored 
vertex:

Depth-First Search 13
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Analysis of DFS

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or BACK

❑ Method incidentEdges is called once for each vertex

❑ DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m



Cycle detection

• Graph G has a cycle iff DFS has a back edge

Directed Acyclic Graph = DAG



Topological sort

Topological sort of a DAG G=(V,E)

1. Run DFS(G), compute finishing times of nodes
2. Output the nodes in decreasing order of finishing times



The Graph – relationship between clothing procedures

The Topological sort – a workable sequence of clothing
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This is a back edge. 
We don’t follow it 

because the grey node b
is on the stack.



s

d b

e a

c

s

a

b

d

c

A back edge connects 
from a grey node to 
another grey node.
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This is a forward edge.
We don’t follow it because d

is coloured black.
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A forward edge connects a grey 
node to a black node.
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This is a cross edge.
It connects between two 

different subtrees.
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Both cross edges and forward 
edges connect from a grey 

node to a black one.
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This is the DFS tree.
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elements based on 
their finish times.



1. DFS WITH STACK
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Breadth-First Search
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Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Breadth-First Search

❑ Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph

❑ A BFS traversal of a 
graph G 
◼ Visits all the vertices and 

edges of G

◼ Determines whether G is 
connected

◼ Computes the connected 
components of G

◼ Computes a spanning 
forest of G

❑ BFS on a graph with n
vertices and m edges 
takes O(n + m ) time

❑ BFS can be further 
extended to solve other 
graph problems

◼ Find and report a path 
with the minimum 
number of edges 
between two given 
vertices 

◼ Find a simple cycle, if 
there is one
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BFS Algorithm
❑ The algorithm uses “levels” Li and  a mechanism for setting and getting 

“labels” of vertices and edges.
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Example
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Example (cont.)
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Example (cont.)
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Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts

of Gs

Property 3
For each vertex v in Li

◼ The path of  Ts from s to v has i
edges 

◼ Every path from s to v in Gs has at 
least i edges
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Analysis

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or CROSS

❑ Each vertex is inserted once into a sequence Li

❑ Method incidentEdges is called once for each vertex

❑ BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m
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Applications

❑ We can use the BFS traversal algorithm, for a 
graph G, to solve the following problems in 
O(n + m) time

◼ Compute the connected components of G

◼ Compute a spanning forest of G

◼ Find a simple cycle in G, or report that G is a 

forest

◼ Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists
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DFS vs. BFS
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Shortest paths 

Biconnected components 
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DFS vs. BFS (cont.)

Back edge (v,w)

◼ w is an ancestor of v in 

the tree of discovery 
edges

Cross edge (v,w)

◼ w is in the same level as 
v or in the next level
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2. BFS WITH QUEUE
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