
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

 Lecture 12    
topological sort, 

BFS



© 2015 Goodrich and Tamassia Depth-First Search 8

DFS Algorithm from a Vertex



© 2015 Goodrich and Tamassia Depth-First Search 9

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge



© 2015 Goodrich and Tamassia Depth-First Search 10

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E



© 2015 Goodrich and Tamassia Depth-First Search 11

DFS and Maze Traversal 

❑ The DFS algorithm is
similar to a classic 
strategy for exploring 
a maze
◼ We mark each 

intersection, corner 
and dead end (vertex) 
visited

◼ We mark each corridor 
(edge ) traversed

◼ We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)



© 2015 Goodrich and Tamassia Depth-First Search 12

Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E



© 2015 Goodrich and Tamassia

The General DFS Algorithm

❑ Perform a DFS from each unexplored 
vertex:

Depth-First Search 13



© 2015 Goodrich and Tamassia Depth-First Search 14

Analysis of DFS

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or BACK

❑ Method incidentEdges is called once for each vertex

❑ DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m



Cycle detection

• Graph G has a cycle iff DFS has a back edge

Directed Acyclic Graph = DAG



Topological sort

Topological sort of a DAG G=(V,E)

1. Run DFS(G), compute finishing times of nodes
2. Output the nodes in decreasing order of finishing times



The Graph – relationship between clothing procedures

The Topological sort – a workable sequence of clothing



s

d b

e a

c

TOPOLOGICAL

SORT



s

d b

e a

c

s



s

d b

e a

c

s

a

This is a 
discov. edge



s

d b

e a

c

s < a

s

a



s

d b

e a

c

a < b

s

a

b



s

d b

e a

c
b < c

s

a

b

c



s

d b

e a

cc < d

s

a

b

d

c



s

d b

e a

c

s

a

b

d

c

This is a back edge. 
We don’t follow it 

because the grey node b
is on the stack.



s

d b

e a

c

s

a

b

d

c

A back edge connects 
from a grey node to 
another grey node.



s

d b

e a

c

s

a

b

d

c



s

d b

e a

c

s

a

b

d

c



s

d b

e a

c

s

a

b

d

c



s

d b

e a

c

s

a

b

d

c

This is a forward edge.
We don’t follow it because d

is coloured black.



s

d b

e a

c

s

a

b

d

c

A forward edge connects a grey 
node to a black node.



s

d b

e a

c

s

a

b

d

c



s

d b

e a

c

s

a

b

d

c

e



s

d b

e a

c

s

a

b

d

c

e

This is a cross edge.
It connects between two 

different subtrees.



s

d b

e a

c

s

a

b

d

c

e

Both cross edges and forward 
edges connect from a grey 

node to a black one.



s

d b

e a

c

s

a

b

d

c

e



s

d b

e a

c

s

a

b

d

c

e

This is the DFS tree.



s

a

b

d

c

e

d c b a e s
We sort the 

elements based on 
their finish times.



1. DFS WITH STACK













 









SUTD ISTD 50.004 Intro to Algorithms 



SUTD ISTD 50.004 Intro to Algorithms 



















© 2015 Goodrich and Tamassia Breadth-First Search 1

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015



© 2015 Goodrich and Tamassia Breadth-First Search 2

Breadth-First Search

❑ Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph

❑ A BFS traversal of a 
graph G 
◼ Visits all the vertices and 

edges of G

◼ Determines whether G is 
connected

◼ Computes the connected 
components of G

◼ Computes a spanning 
forest of G

❑ BFS on a graph with n
vertices and m edges 
takes O(n + m ) time

❑ BFS can be further 
extended to solve other 
graph problems

◼ Find and report a path 
with the minimum 
number of edges 
between two given 
vertices 

◼ Find a simple cycle, if 
there is one



© 2015 Goodrich and Tamassia Breadth-First Search 3

BFS Algorithm
❑ The algorithm uses “levels” Li and  a mechanism for setting and getting 

“labels” of vertices and edges.



© 2015 Goodrich and Tamassia Breadth-First Search 4

Example

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F



© 2015 Goodrich and Tamassia Breadth-First Search 5

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2



© 2015 Goodrich and Tamassia Breadth-First Search 6

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2



© 2015 Goodrich and Tamassia Breadth-First Search 7

Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts

of Gs

Property 3
For each vertex v in Li

◼ The path of  Ts from s to v has i
edges 

◼ Every path from s to v in Gs has at 
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F



© 2015 Goodrich and Tamassia Breadth-First Search 8

Analysis

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or CROSS

❑ Each vertex is inserted once into a sequence Li

❑ Method incidentEdges is called once for each vertex

❑ BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m



© 2015 Goodrich and Tamassia Breadth-First Search 9

Applications

❑ We can use the BFS traversal algorithm, for a 
graph G, to solve the following problems in 
O(n + m) time

◼ Compute the connected components of G

◼ Compute a spanning forest of G

◼ Find a simple cycle in G, or report that G is a 

forest

◼ Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists



© 2015 Goodrich and Tamassia Breadth-First Search 10

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest, connected 
components, paths, cycles

 

Shortest paths 

Biconnected components 



© 2015 Goodrich and Tamassia Breadth-First Search 11

DFS vs. BFS (cont.)

Back edge (v,w)

◼ w is an ancestor of v in 

the tree of discovery 
edges

Cross edge (v,w)

◼ w is in the same level as 
v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS



2. BFS WITH QUEUE



































SUTD ISTD 50.004 Intro to Algorithms 


	Dfs_stack.pdf
	1. DFS with stack
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22




