

Lecture 12 topological sort, BFS

CS 161 Design and Analysis of Algorithms Ioannis Panageas

DFS Algorithm from a Vertex

Algorithm DFS (G, v) :

Input: A graph G and a vertex v in G
Output: A labeling of the edges in the connected component of v as discovery edges and back edges, and the vertices in the connected component of v as explored

Label v as explored
for each edge, e, that is incident to v in G do
if e is unexplored then
Let w be the end vertex of e opposite from v
if w is unexplored then
Label e as a discovery edge
$\operatorname{DFS}(G, w)$
else
Label e as a back edge

Example

(A) unexplored vertex
 (A) visited vertex
 - unexplored edge
 \longrightarrow discovery edge
 - - -- back edge

(c) 2015 Goodrich and Tamassia

Depth-First Search

Example (cont.)

© 2015 Goodrich and Tamassia
Depth-First Search

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope
 (recursion stack)

Properties of DFS

Property 1
$\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ visits all the vertices and edges in the connected component of v
Property 2
The discovery edges labeled by $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of the connected component of v

The General DFS Algorithm

a Perform a DFS from each unexplored vertex:

Algorithm DFS (G) :
Input: A graph G
Output: A labeling of the vertices in each connected component of G as explored
Initially label each vertex in v as unexplored for each vertex, v, in G do
if v is unexplored then
DFS (G, v)

Analysis of DFS

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Cycle detection

- Graph G has a cycle iff DFS has a back edge

Directed Acyclic Graph = DAG

Topological sort

Topological sort of a DAG $G=(V, E)$

1. Run DFS(G), compute finishing times of nodes
2. Output the nodes in decreasing order of finishing times

The Graph - relationship between clothing procedures

The Topological sort - a workable sequence of clothing

TOPOLOGICAL SORT

c.

d

A back edge connects from a grey node to another grey node.

d

This is a forward edge. We don't follow it because d is coloured black.

A forward edge connects a grey

 node to a black node.

This is a cross edge.
It connects between two different subtrees.

Both cross edges and forward edges connect from a grey node to a black one.

1. DFS WITH STACK

DEPTH FIRST SEARCH

Stack Status

DEPTH FIRST SEARCH

Stack Status

DEPTH FIRST SEARCH

Stack Status

DEPTH FIRST SEARCH

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Breadth-First Search

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS Algorithm

- The algorithm uses "levels" L_{i} and a mechanism for setting and getting "labels" of vertices and edges.

```
Algorithm \(\operatorname{BFS}(G, s)\) :
    Input: A graph \(G\) and a vertex \(s\) of \(G\)
    Output: A labeling of the edges in the connected component of \(s\) as discovery
        edges and cross edges
    Create an empty list, \(L_{0}\)
    Mark \(s\) as explored and insert \(s\) into \(L_{0}\)
    \(i \leftarrow 0\)
    while \(L_{i}\) is not empty do
        create an empty list, \(L_{i+1}\)
        for each vertex, \(v\), in \(L_{i}\) do
            for each edge, \(e=(v, w)\), incident on \(v\) in \(G\) do
                    if edge \(e\) is unexplored then
                    if vertex \(w\) is unexplored then
                        Label \(e\) as a discovery edge
                    Mark \(w\) as explored and insert \(w\) into \(L_{i+1}\)
                    else
                    Label \(e\) as a cross edge
            \(i \leftarrow i+1\)
```


Example

(A) unexplored vertex
(A) visited vertex

- unexplored edge
\longrightarrow discovery edge
- - -- cross edge

Example (cont.)

© 2015 Goodrich and Tamassia
Breadth-First Search

Example (cont.)

Properties

Notation
\boldsymbol{G}_{s} : connected component of s Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, s)$ visits all the vertices and edges of \boldsymbol{G}_{s}
Property 2

The discovery edges labeled by $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree \boldsymbol{T}_{s} of G_{s}
Property 3
For each vertex v in L_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in \boldsymbol{G}_{s} has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence \boldsymbol{L}_{i}
- Method incidentEdges is called once for each vertex
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Applications

- We can use the BFS traversal algorithm, for a graph G, to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

DFS vs. BFS (cont.)

Back edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is an ancestor of v in the tree of discovery edges

Cross edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is in the same level as v or in the next level

BFS
2. BFS WITH QUEUE

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

B

BREADTH FIRST SEARCH

BREADTH FIRST SEARCH

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status
。

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

G
\mathbf{D}
\mathbf{E}

BREADTH FIRST SEARCH

Queue Status
D
E
F

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

BREADTH FIRST SEARCH

Queue Status

